
F# VECTOR CALC

- In physics we talk  about lots  of quantities - temperature ,

the acceleration  due to gravity ,
electric fields - that

Change from place to place , or  over time ,

- We  express these changes using
derivatives

,
and then

we work  out laws & equations that tell vs how the

the quantities behave .

- When the  rule is for something like the displacement
of a String from equilibrium ,

or the oscillation  of a

mass on a string ,
the stuff  ya learned in single

Variable Calc  is sufficient :

Xeq
* →  ✓

Hitt "§ tianya.it#tE1. →

X=  0  ×=L

dyk.kz# - fiddly '
= 0 M dyed = - kxlxtti - xeg )

- But what about quantities where we  need two  or  more

Coordinates to specify the position ? For  instance
,

the

temperature @ a pt . ( x ,y ) on  a  rectangular plate  w/ one

edge @ Fixed T ?

#
- y ←

This  end ( *  0 ) held @ constant

-
temperature , starting @ time to .

€#What  is temp T @ this

point 10 seconds later ?

- To  write the
eqn governing heat Flow  & temp . Tlx ,y ,

E)
,

med to describe changes  in  × & y directions
.

How ?



- And what about something like  a  circular drum head
,

Where it  makes sense to  use polar  cards ( p , 0 ) ?

^Z
~

How does pt , @ p= 1212
, 4=+14

- -

• move  up  E
,

down ? What  is heighttoffeesabove 1ham  eq . @ t=5s ?

- I Is there  something like the string eqn ?

1- R -71 How  do dldp E
, dldcf show up ?

- Also
,

what about vector like the Electric

field E ?

- quantities

- In this section  we 're
going

to generalize  what  you

know about  derivatives to functions ( both scalar  and

vector ! ) of  multiple variables
,

and in different

Coordinate systems .

- We 'll see that there's more than  one sort  of
"

derivative
,

"

with various  ways to Combine them
. And

each one has  its  own
'  '

FUNDAMENTAL THEOREM
,

"

its version  of
"

INTEGRATION IS

§£× d§(¥ = F. ( B ) - F (A)
← ANTI - DIFFERENTIATION

"

- Let's get  started .

## THE GRADIENT

- When we studied OCS
,

we talked about the

DIFFERENTIAL Of a function . It tells us how  much a

Function changes when  we change  its arguments .



SCALAR !

- So  if  we have a
, ,

function Flx ,y ,
-2 )

,
the difference blt

F @ two  infinitesimally nearby points  Is :

dflx ,y ,
-2 ) = Flxtdx

, ytdy ,
2- + dz ) - FIX ,y ,

-2 )

=  E¥,d× + Iy±dy + adf.zdz-YEIIT.be
dflx ,y ,

-2 )

#

⇒ DF  
= d¥×dx + ddfydy + d¥zdz

- There  is lots of  info here . Suppose I  start @ ( 1,7 ,  -3 )

and more a small distance
'

dl
'

in the ff 1 K - yr )

direction :
dx dy No  E

- .

old =  detzlx . f) = ( fzde ) I + ffzde )y
to"sP "

↳ dF= E¥h
,
,%yFzdl

+
III.

,

as,t'Edl
)

← -

y
' T

T
Displacement  in

Displacement Y - dir .

Rate F  changes  when
in  x. d. . , Rate F  changes  in

moving in  × - dir .  @
y . dir , @ ( 1,7 ,

-3 )

pt . ( 1,7 ,
-37

- So  if  you  can take each derivative
,  you can tell me the

rate a function  changes when you move in  any director .

- Another  way to think  of this  is to  imagine  you  start

@ some pt .

'

P
'

& move an  infinitesimal distance dl in  a

direction specified by some UNIT Vector N
.

To  make

things  easy
,

lets just look @ a function  of  XE
, y .

dFIp=d¥/p×(u×dl) +

EtyIIpxluydlcdI-dllnIxtufy7ldFelp-dElpuxi-9Ej1puyniDerirahueotFinthedirectnnie@pt.P

"



- Maybe  You've seen this Called a
"

DIRECTIONAL DERIVATIVE
.

"

EII Flx ,y ) = - ×2y What  is  dir
.  derivative @

x=1
, 4=2 in

XFK 't ) ( a) in = - I dir ,

1 1,2 ) ( b ) in =  yr dir .

( c ) in = fzlrxty ) dir ,

#¥¥¥y
dg .  =d¥×dx + datgdy = - Zxydx - ×2dY

(a) dI=  dlir = - dtx ⇒ dx= - dl dy=0

DF ( 1,27 =
. 2. 1. Zdx - 12 .  dy = - 4 dx - dy =  +4dL

⇒ d¥e|
, ,

, ,
,=

 4 in the - ^x dir ,  ← Makes  sense ! FIX ,y ) gets

bigger  if  we  start @ ( 1,2 )

& move  in - I dir ,

lb ) DI =  dlir =  dlj  ⇒ dx = 0 dy=dl

dfll , 2) = - 4 dx - dy = - de

⇒ feel
,

, ,
,=

-

1
in the +  y dir ,

(c) dI=dlir= fztx + ⇐ if ⇒ dx=dy = dfz

dfll
, 2) = - hfzde - fzdl = - Ede

⇒ doeth
,

, ,
,=

- E in the fztxty ) direction .

- Now
,

theres an easier way
to get @ this info . Humor  me

for  a  moment ,
To  move to  an  infinitesimally nearby point ,

we follow some  displacement vector dI=  dxxrtdyy +  dzE .



- What could we combine with this vector to get the

scalar quantity dflx ,y ,
Z ) ? That  is :

DF  
= ddtxdx + E¥,dy + ddtzdz  = ( dxxrtdyytdziz ) . ( ? )

- Ah ! We could dot DI into some vector thing whose I. y ,

& I Components are the derivatives of Flx ,y ,
-2 ) !

DF  = ( dxxrtdyy +  dzi ) . ( k  9¥ +  yd£
,

+ III )
-

The GRADIENT of Flx ,y ,
-2 )

- A shorter  way to write this Is df  =  DI . B F

- The  notation
' BF '

is due to MAXWELL .

- This makes it  really easy
to get the directional derivative .

Given some  direction  it :

farad F

p.ae  a  dream  in & era "

9¥ = it . (TTF ) c- this @ some  specific pt .

f ( x= ...
,  y= . .

.

,
Z = . . . ) to get

Unit  vector dir .  der ,  in that  direction

@ that point .

¥1 Flx ,y ,
-2 ) = Ax e-

1 " +42 )z2 4 A  = constant

BF =
- 2×z2Aet×' +4

'

)f - Zyzz A e-
" 2+44

+ 2zAet*4" E

w=  I @ 12=(4,0/2) ?

ii. BF  =  I. IF  = -
2×z2Aet×2tY

' )

( ii. TTF )| = - 32A E
 ' 6

( 4. 0,2 )



- So the gradient contains all the same  info  as the differential .

But since  it's a vector
,

it  also tells  vs other things .

- For  instance
,

since DI I BF are both vectors :

DF  =  DI . PF  = IDIIIBFI cost ← 4 bltdl

w w -
& FF

CHANGE  in F Mag .  of Mag .  of

at IEF

- So the change in F  depends  on the direction  you go ,

and here we see that show up as a fader  of cost .

This  is largest  when 4=0 - when DI E
.

TTF point

in the same direction .
In other  words

,
@ any pt . we

get the LAra_Est DF by moving
in the direction pointed

out by DF !

- The gradient  of a function Contains all the info about

how  it changes in each direction
.

If we more a

small distance DI
,

the change Is DF  
=  DI . ( TTF ) .

- Now
, forget gradients for a Moment & go back to single

Variable calc .
One  of the most  important  results  you learned

there  was a relationship blt  integrals & derivatives that  yw

probably Called
"

THE FUNDAMENTAL THM OF CALCULUS
"

.

fPdxdf¥ = FIB ) - Fla )

¥
× '

§ Nothing too  deep ! Add
up  all the

↳ §¥Flx) = FCB ) - Fla )
Change in F blt A  E. B

, get  

differenceblt FLB ) & FCA ) :

FH ' ^

t.tt#nzx



- So  a less exciting but totally equivalent  statement  of this F. T.is :

faBdF = FCB ) - FLA )

- But  nothing about
that

 refers to  an  *  axis  or  a  straight line ! Its

just :

"

Add
up  all the changes  in F  I

.
 you get the total change

in F
"

, right ?

- Well if  I  move a small ( infinitesimal ) displacement  DI
,

a

Function Flxiy ,t ) changes by DI . BF
,

so

f ,?dF  = FBI . # F) = FCB ) - Fla )

p
T

Displ . from pt .  to pt .  along P

K Whatever path P  I follow From

A to  B
Z B

t •

n

" *
Corps ¥ FUNDAMENTAL THEOREM

r ( XB,YB,ZB )

|,¥ II.YFII"INI .no#.ns-awsx.

× >
a path from A to B

, you get the
• >

PA
Y difference blt FLB ) E

,

FLA ) .

COORDS ( XA
,
YA

,
ZA )

- This  Is  really the same thing as the F. T
.  you 're already

familiar  with - sum  of  changes  = total change . We're just

adding them up along some path that  maybe  Isn't a

straight line like the X - axis !

¥1 Force E applied along some path from A to B ? Work  is :

Wp = faBdt . E {
Conservative Force : E = - BU ⇒ Wp = - father .EU = UCA ) . UCB )

.

Nan . Cars .
Force : Depends  on path Does  not  depend on  P

,

just  on A  & B !



- Okay ,
some  of this  is  stuff  you've seen before

.
But  what  if

I gave  you , say ,
a POTENTIAL ENERGY in polar  Cards .

What

Is the force ?

a- g

How do  we  evaluate the

Ulp , 4) ⇒ E = - pulp ,¢ , = ?
gradient  in polar  cards ?

- Lets
go

back to  our starting point for the gradient :

DF  =  DI . ( BF )

- Notice that I'm  not  referring to coordinates here ! This

statement  is true
, period ,

no  matter what Cards I use

to  describe things !
Just  a  statement  about  a

DF  = 0¥
,

dq
,

+ ddqfzdqz
d function  of two  variables .

How  we  write  DI in  an

d I = h
,

dq
,

E,
+ hzdqz Ez ←

OCS ( q , ,qz ) w/ scale factors

hi & hz
,

unit vectors  E
, & Ez

BF  = ( ? ) E
,

+ ( ? ) £2 ~ Grad F  is a veto
,

so  it

has Comp .  in E
,

E
.

Ez directions .

dF=  DEEF  ⇒ BF  = 'T
,
date ,

+ KEE eh

-

GRADIENT IN AN OCS

- This makes sense physically .

The E
, Component  is how

F changes  when we  move a distance h
, dq

,
in that

direction
,

and likewise for the Ez component .

- Polar : BF  = daff + f- Eff ¢

SPC : BFLR
, -0,0 ) = dater + IEEE + ¥0 9¥ of



F# A VECTOR DIFFERENTIAL OPERATOR

- So we've got this thing called the gradient  of F : IF
.

What  else can  we do  with it ?

- Before  we try to  answer that
,

let  me make a suggestion .

We often talk  about the derivative as  if  it  were  its

own thing .
That  is

, we 'll refer to 1 dldx
'

as  if that

were one  of the mathematical objects we encounter

in  our  work .

- But what  is dldx ? Its not a thing the same  way

that a number or  a function  is a thing , right ? We

might talk about the value that  dfldx takes for

different values of × ,
but we 'd never talk abut

the value  of  dldx itself .

- No
,

it's more like '
+

'

or
'  

-

'
or some  other  operetta .

Part  of  its meaning Comes from the fact that  it has

to OPERATE on something ,

- So  we call dldx  an
"

OPERATOR
"

blc  it  is meant to

Operate an something , That  is
, part  of  its meaning

is that  we Feed dldx a function Flx ) E
,

it gives  vs

A related Function  we  call dfldx

- There are many
different kinds of operators ,

so  if  we 're

being specific we 'd Call dldx A DIFFERENTIAL

OPERATOR
,

- Likewise
, we say that TT is a VECTOR DIFFERENTIAL

OPERATOR
.



- Its exactly what  its name  means ! We feed it functions

( so  its an  operator ) E
.

it  returns a  veckr 's worth of  related

function via  x ,y ,
& z  derivatives

.

B=xn¥
,

+  y¥
,

+ Eofz

- So this  may seem a bit abstract , and it  is
,

but  its

Useful bk  it helps vs understand what else we can  do

wl B !

-
For example ,

What  if  we had a VEERFIELD ?

I ( × ,y,z ) = Axlx ,y,z ) k + Aylx ,y,z)y + Azlx , 4,7 ) E

Is there a way that # could operate on that ?

- Well
, sure . After all

,
B is

"

vector . like
.

"
It has

components
like a vector ,

it's just that each one expects to

be
"

fed
"

a function . So how would we combine  it  w/

a vector field ? Same way we 'd combine any two

vectors :

I . # orD=
\

DIVERGENCE '

' CURL '

F# THE DIVERGENCE

- The DNEraENCE_ of a V. F . Itlx ,y ,
-2 ) is a SCALAR function

that  we get by feeding its components to the

derivativesof B according to the dot product .



- So given
It = Axktayy + AZE :

B. It = ( I¥x+y¥y+E¥z ) . ( Axi + Ayf + Aziz )
=  ii. ( ¥x(A×k+Ayy+AzE ) ) +  f. ( ¥y(A×I+Ayy+AzH)

+ E. ( EtzlA×x+Ayy+AzE )) ←¥eedE to IX.  eh
,

then  dot  result  into  Iieh .

=  ii. ( I  da¥+yI¥' + EYE ) +  f. L ...
) +  E. l . "

)

¥ .y= ,
IX. y¥z=o 5- CAREFUL ! ¥×k=0,ek ,

=
DAI

+ daily + d±z
but Etaiejto for some Ocs !

dx DZ

⇒ B. E=daA÷+Et¥+da¥

- This is the div .  in Cartesian Coords .
In OCS the

details  will be different but the idea  is the same :

Derivatives  of the component  of # ( and scale factors
,

in

an OCS ) are added together to produce a scalar

function
.

F# It = xyxn + 2y2y + ×÷Y' E
- - -

Ax Ay Az

B. It = Itxlxy ) + ¥142) + ¥z(×¥ )

=  y +  4y - 2×-42
z3

↳ B. It = 5y - 2×-42
z3



- Later
,

we 'll work out how to evaluate B. It in  an OCS ,

But first
,

what  does  it meat ?

- The divergence has a simple & really useful interpretation .

Pick some pt .
E

.
imagine an  infinitesimal volume  DV

around it ,
If Be E > 0 @ that point ,

more E is

emerging
from DV than

going
into  it . If B . # < 0

,

it's the reverse . And if D. E=O
,

then as much

It is  emerging as  is going in :

→ → →
→

¥T÷i#FtFEi#t.EE#-
→ →

a a

F. E > 0 F. Eco F. It -0

- Just like the gradient ,
the Divergence has  its  own

'  ' Fundamental Theorem
.

" But to state  it
, we need to

remind ourselves  of  a few things about volume & surface

Integrals .

- INTERLUDE -

- A surface Integral visits every point  on a surface
,

multiplies the value  of some function ( the  integrand )

by an  infinitesimal area da
,

and adds the result to

a running total .

~
A  closed surface has a

definite  inside & outside .

CLOSEDSsdat or §sda£ 0€..IE?t4IeFeIOpen
surfaces  don't have  an  unambiguous  inside 1 outside .



- You  med two courts to  describe  a point  on  a surface
,

so a surface  integral always  involves  integrating over

two Variables .

z
S : OEXE Lx

,
OEYE Ly

'  '

f Area . f§a=fo↳dxfo%y

×####i =f¥xlxK)=fYx↳
KE#¥Y =L

,
( x lo↳ ) = ↳ Ly

✓

eda

W[t
 if we integrate Flxy ) =  xy2 over s ?

fsda F  =fgYxfgYyxy2=fgYx( tsxyslot)

= fo¥x tzx Ly3 = 16×243 µ = 6th,2Ly3

- The It area element DE is just  da on the

surface
, multiplied by the Notcal vector :

DE =  dad

For a cloud S
,

a points from inside to  outside .

For  an

Opet S there are two choices E
,

we just pick  one .

For the surface above
,

in could be E or - I
.

o÷*±EiI±I÷;⇐÷



- The integral of It . a over a surface  is called

the FLuX_ of It through the surface . It's a

measure of how  much It
passes across the

surface'

.

←
Flux  of # across  a

' ' I ^
d surface S is  an  in -

0¥14,pamrtEEr# fsdoi . 'A=§dan' A
patent concept : !

face  '
Crosses

'  it !

A±=a . I →
( da

- For a closed surface
,

a positive flux  means a net

Flow  of # from inside to  outside . For a negative
Flux  it's the opposite .

For an  open surface a

positive ( negative ) Flux means a  net flow of I from

one  side to the other  in the direction  of ( or opposite
to ) the normal ,

- For a ✓OwME_ lNtE#AL we visit  every point  inside

Some 3- D region , multiply the value of some function

@ that point by an  infinitesimal volume  DV
,

8
,

add

that to a running total :

c-
Volume  element

§W F
- integrand

tregim

- We need 3 cards to specify where  you  are  in some

3- D region , so a volume  integral always involves

integratingover three variables .





- Now back to the divergence E. its fundamental theorem .

Imagine some 3- D region that we 'll call V
.

It's

surrounded
by a surface 5

,
and since V is  inside 5 it  must be

that 5 is a CLOSED surface
.

- If  we add
up

DV F. I for  every little DV inside V
,

the

result  Is the Fwx of It through 5 :

have .E=§d£ . 'A vE€¥¥E¥s
5

This  Is known as the DIVERGENCE THEOREM
.

EII It =  xzyxr + zipy +  XYZE

V : Cube  w/ OEXEL
, OEYEL ,

OEZEL

Show that the Div . Thm
.  is true for this example .

it

g
dV=  dxdydz

f-
Be E = Zxy + Zyz +  xyµ#

y

= 3xy + Zyzk¥1 ↳ §NBIh={dx§dy§dz ( 3xy+2yz)= TEE
L

z Closed surface surrounding V Consists  of

^

-
6 squares :

L ( i ) ×=O
, OEY ,

-21L
,

d£=  dydzl - k )

¥\\
( z ) ×= L

, Oey ,z⇐L ,
DE =  dydz  I,µ\¥,

. , y , o
, o±×,⇐ ,

,
a ,a=a× . , .y ,yiJ.gl#$

(4) Y= L
,

OEX ,zEL ,
dE=  dxdzny

'
 .

i. (5) Z=O ,
OEX ,yEL ,

DE =  dxdyl - I )

ii.
%

~
-

'

(6) z= L
,

OEX ,yEL ,
d£ =  dxdy E



Flux through side 1 @ X=  O

DE =  dydztx )
} DE . 'A= 0 on  side 1

IVO
, y ,

z ) = OK + zyly + OE

Flux through side 2 @ × =L

DE =  dydtx } DE . # = ltydydt
II ( L

, y ,z ) = thy I + Zy2^y + LYZE on side 2

fgta .
'A = fohzfoldy L2y =L

' foltz ltz -145 ) = tzt
' foldz

= lz [
5

Flux through side 3 @ 4=0

die = dxdz ty )

} de . 'A=O ⇒ No Flux

Jtlx
,

0
,

z ) = Of + Of + OE

Flux thrash side 4 @ y =L

d£=  dxdz  if
I ( × ,4t ) = Lxzxr + they + Lxzrz } ddi # = ltzdxdz

an side 4

§dE . # = tz L5 ← CHECK !

c-
Also gives zero .

Flux through side 5 @ Z=O check this !

Flux through side 6 @ Z =L

DE =  dxdy E
}d£ . # = Lxydxdy an sickle

II ( x ,y ,
L ) =  Xzyrxtyky + LXYE

feta ' # = Lfotxfoayxy = ↳ ( ; e) ( { e) = ±
,

etc
"E " !

TOTAL FLUX : tz L5+ tz L5 + I
,

L5 = 5g L5 ✓



- Why is this true ? Recall our
'

meaning
' for the divergence ,

how  it tells us whether  more # is Coming out  of  or

going
into an  infinitesimal volume .

- Now  stick two together ,
and add up  DV B . # for  each .

Then add

a 3 #
,

a 4th
,

etc ,

¥¥E¥÷±÷F¥÷
← Fneaitasaha:#:Eat'nIya±sEI'T

'TFE
.

fluxes Canal .

¥514,
← All the fluxes  involving common faces Canal .

<k¥44,7
So  all thats left  is fluxes through the outer

'EE¥¥¥¥⇒
faces .

g-
← aandydreonwaknovfthhafuywdvw

's

.nl?YInacaImbusiuY .

Face around it  is just the ' outer faces ' of all

the little cubes  you used . So :

fly # I =§,dE . 'A

- For  an example like the one we just did - a cube -

it made sense to work in Cartesian coords . But what

if we are working with something like a cylinder ? Or

what  if we need to evaluate the divergence of a vedw

given
 in SPC .

How does the divergence work  in  a

general OCS ?

- Earlier
,

we saw that
' B '

in an OCS was given by

D= E. ntofgt
,

+ eihtzsfaz + £3 'hj¥g
- How  does this act on something like # =A

, E. + Aaezttbes ?



- The important thing to remember is that fat
,

Ej  may not

be Zero
,

like it  is in Cartesian coords .

- To keep things simple let's work  in 2- D .

We want to  eval :

( eihtofa
,

+ ei 'E¥q ) . 1 Air ,
+ Aziz )

=e
, .lk

,
IF

,
eitnt

,
AEI

,

+ th
, II. eat hate

,

)

+ ei.kz#Eei+thhdE+nzdaAEez+hIAzdaE )

- We know E
,

.E
,

= eiz . Ez =L
,

and £
, .Ez=O .

But what  about

E
,

or £2 dotted into something like  dei
, ldqz ?

- First
,

we can show pretty quickly that something like

f. . ( dei
, /dq

,
)=O . E

,
.£

,
=L

per .
 of  a  constant

m

eiiodft
, =z¥qlele,) = £ adg

,

(1) =otistenCheck :  = E (Efta
,

ie
,

+  E
, .Ef÷ )

=  E
,

.deI ✓

49 ,

And the same goes
for Ez . (d^e4dqz ) .

- Now what  about terms like E
,

. ( deiddq
,
) ?

ei If =ei¥an÷¥ad=eitn÷E÷¥n+'Ef¥aa
.

)

= eit 'EI÷ei+ Kathleen.IE#eesn't

70

= - htzdehyeilez+ here , .¥adh , E. bdafhehiei

= htdahfeelei
'

+ h÷ Eighth As  above !

= htzdhid9z



-
So we get

ei¥÷= that
.

eih÷=÷E÷
- And now we know how to evaluate all the terms in B. It :

( eihtofa
,

+ eihzofaz ) . I Ate ,
+ Aziz )

=ein÷IAaei+fA¥Ei+'aEt÷Y+kai¥a÷

)

+ eil

'EdaAEH+'eh9f÷+'EdaAEei+h÷Az¥E
)

= 't
,
IT

,

+ htaz 'EIE÷ + ntzan ,

date
,

+ he date

= h÷hz ¥
,

( hztti ) + hh÷z ¥2 ( h
, Az )

⇒ B. I = hhzsfalhza ) + h÷hz¥dhiAz )

- So
,

for  instance
,

in POLAR COORDS w/ hp =L & h¢ =p

we get :

B. It = etftelette ) + t¥¢lA¢ )

= ay + etae + tdat¥

- Notice that this isnet daeldp +

d '¥ld¢ !

- Just like the gradient ,
the divergence incorporates

the scale faders  of an OCS
.

You Can't just  add

up dttildq . as in Cartesian cards !



-
In 3 - D it's the same idea

, though we have to  worry

about both E
,

. deizldq
,

E
,

£
,

. deisldq
, ,

etc .
The final

result  is :

B. It = nthzhs ( ¥a
,

laihzhs ) + ddazlttzhihs) + ddgjlttshihd )

- To obtain this we used the following results
,

which we 'll use again
later :

e. dae÷=n÷¥E eiY÷=o
- -

Assumes  ittj ! True for jei wjti

EII SPC r
, 0,0 w/ hr =1

, he =  r
, h¢=rsinO

Be It = plane ( ¥rlr2sm0Ar)+¥o( rsmoao ) + ¥y(rA¢ ) )

⇒ NO # ( r2Ar ) rddg ( Sino Ao ) r did
DO

↳ B. It = r÷¥rlr2Ar ) + ¥ Etolsinoao )

+
1- d_A¢

RSMO DO

CHECK : I =  4 F +0^0+00^1

Be 'A= r÷¥l4r2 ) = I
in = ftp.t#yf ← Uae B . I in → B. E = nasty.

✓

Cartesian



FIK THE CURL

- The Cups of a V. F
.

Ttlx ,y,z ) is a new V. F , that

we get by feeding the Components of I to 57

according to the rules for taking a cross product .

- Recall that

Bx It = ( By Az - Betty ) K + ( BzA× - B×Az)^y

+ ( Bx Ay - By Ax ) E

- So  in Cartesian Coords the CURL of It is

ex # = LEFT - EY¥)i + 1 EFI' - I¥ty

+ lda¥ - da'¥H

Et E =
- yitxy + OE

o

BxE= He cos -

Eyzxi
) ) i + (Etzfy

) - Etxco ) )y
-

I

+ ( aE%x) -adfyty) ) I = ZE

- As we did w/ the divergence ,
we 'll work  out how to

evaluate the curl in a general OCS . But first let's talk

about what  it means .

-

The divergence  of  a V. F . @ a point tells us whether  more

V. F.  is coming out  of or going
into a tiny region around

that pt ,
The CURL

,
on the other hand

,
tells us if the

vector has any
'  '

rotation "
or

"

Curliness " around that point .



-
Remember : Bx # is a vector ,

In or example it  was

ZE .

- The direction  of this vector gives  us an axis
,

and

its sign & magnitude tell Us the
'

amount
'

i. direction

of the vector fields curliness Around that axis
, @

that point ,

- If  you point  your thumb along the axis
,

the Vector

Field has some
'  ' rotation "

or
" Circulation "

around the

axis in the direction of  your curled fingers @ that

Point .

- Consider the example we just  worked out
. Looking down

from above ( the Z - axis is Coming out of the page ) the

V. f. looks like

← y ←
Your thumb sticks out  of the

/ ← T page ,
and @ any point the

L /
x a I y

T
< net

'

Curliness
' Of V. Fi  around

1tying
,

\
,

→ / your thumb @ that point  is CCW .

\
, =,

y

- Now let's be a bit  more precise . Imagine  a tiny (

infinitesimal) patch of area around a point ,
with area  da

& normal lperpindicular ) direction a
.

Then d£ . ( TTXE )

is basically DI . # added
up

around the perimeter
of that little patch .



- Heres what I mean

t¥¥Ef÷EEe.

Ediew%÷E#¥
/ Idd

up  dt . I aroundFlux  of Ex # across

tiny patch of  surface
perimeter .

- Now what  if  we stick two  of there little patches

together ?

%÷fn¥¥F=⇐¥tmdeEalong in

c

,

Common  edge  canals  out

>

bk  dIz= - DI
,

there !

[
So  if  we add

%
d£ . # I )

¥77
.

Penny

for two  adjacent patches , get TF¥7Edt . E around their  outer PH#€µ#|Pt##
surfacesperimeter ,

- As we add more & more we can build up any
surface

. Adding together de . (57×1) For each tiny

patch gives us the flux of BXI across the

surface
,

which Is equal to DI . # added
up

around

its perimeter !

←
STOKES 's

fsdE. ( BXE ) = §pdI . # THEOREM

IxO¥i*p÷a¥##f¥¥

.is?sPeEEsts



K¥1 I =  xyzxn +  y2z^y + (2-2×+3-23) I

Bx I =
- yzxn + ( xy - zz ) y - xzz ←

CHECK !

S :  X=O
, OEY ,

ZEL

Z

(
@ f

The perimeter of S is the square

-
wl sides

!1! ( 1 >  ×=  0,4=0 ,
OETEL

in

}µ
(2) x=o

, y=L ,
OEZEL

> (3) ×=0 , -2=0 , OEYEL
!3! >

Y (4) ×=O
,

z=L
,

OEYEL
<

×

( i ) Flux of Ex # across S ?

in
=  I & Ex # = - yzxr +

H¥zyy#EE T  T

→ a. ( FIA ) = - yz
←

Surface has -1=0
,

but Comp .  we

want  only depends  any .

→  DE . ( TTXI ) = - yzdydz

fgdci . Ktx E) = - fottzfoldy y
'  

= - flat ( tzyislot) = - fjdz ¥

= - lz L 4 c-
his  xr

,
so  negative flux  means

Crossing in - Idirector .

(2) Integral of  dt . # around perimeter of S ?

( 1 ) x=0 , y=o ,
OEZEL ⇒ dI=dzE

I ( 0,0 ,
z ) = 3z3E ⇒ II. It = 3Z3dz  on  side 1

fohdz 373 = Efz4[ = E
,

L4



(2) X= 0
, y =L

,
OEZ EL

DI = - DZE

}dEI = - 3z3dz

EVO ,L , z ) = ltzy +3.231

§dz (-32-3) =
- E

,

L4
\

Notice the dir .  otdl

on  sides 2 & 4
,

to

move  vs around the

(3) X=O
, Z=O , OEYEL perimeter  in the

dt = dy ^y
/

right  director .

A- 10 ,y,o)= o }dI ' 'A=o /
(4) X=O

,
Z =L

, OEYEL

DI = - dyy

A' ( 0
, y ,

L )= Lyzy +3µg
}d 't # = - Ly2

foklyl - Ly 2) = - tzLy3/oh= - tz L4

↳ §pdI .
I = ZTL

"
- E

,
Lt +0 -

'

zL4 = - ts Lt ✓

- A special case of STOKES 's THM is GLZEENITHI .

- Consider  a V. F .
It = Axk + Ayy + OE & let S be

a surface  in the X - y plane , so  in = I .

BxE= - da¥x+da¥y + ( dI¥ - EIDE

↳ fdoi.IE#=fsda ( da¥ - da'¥ )



- Since 5 is  in the plane ,
d 't =  dxnxtdyiy an  its

perimeter

II. It = Axdx + Aydy → §pdEE=fp(dxA×+dyAy )

↳ fpldxA×+dyAy ) = fsdxdy ( da¥ - dd'¥ )

[ Green 's Thm  as  a  mathematician

would write  it
,

which is just  an

application  of Stokes 's Them !

- Now
,

the surface e!  its perimeter  in  or last

example were easy to  describe in Cartesian cards ,

But what  if we 're considering a surface or VF that

is  most easily described in some  other OCS ? lbw

do we take the Carl in a general OCS ?

- That  is
,

what  do we get  when we evaluate :

( eihtofg
,

+  Ezhtzodtgztezhtzodgts ) × ( E. A ,+EzAz+E3A3 ) = ?

- As w/ the div
,

the main thing to watch at for  is

the derivatives acting on the unit vectors
.

Rather

than  working this one out  in  detail
,

we 'll quote the

final result

- First ,
it's important to make sure we present  our

OCS in the Correct  order . The unit vectors should

satisfy :

E ,x^ez=E3 Ezx £3 = E
, E3x^e

,
=Ez



- Then the Curl of # in an OCS is :

Ex 'A= E
, ¥3 (ddgzlhstts) - ¥31 hzaz ) )

+ Ezn÷b ( ¥314 ,
A) - at,lhsA3) )

+ ^e3hh÷ ( ¥ ( hzttz ) - off ( h ,A ,
) )

- ( This  result & the expressions for div
, grad , & the

Laplacian all have a geometric explanation that
'

much nicer than  yard guess
from  a

1 brute force '

derivation
,

but we don't have time to go
into

that level of  detail . )

- Another Common  way of  writing this involves a  determinants

**÷nd¥tI¥Iki¥IH
E# In spherical cards the scale factors are hr=l ,

he =r
, h¢ =  rsino . So :

BXE =  

iµs÷no(¥oHsinoA¢
) - ¥

Hao
) )

+ Ers÷no (¥0 ( Ar ) - Ertlrsmo # ¢ ) )

+  if tr ( ¥r(rAo ) - ofolar) )

⇒ Exit .si#dl8dtotIAEtr+HofErEa0Do+HdEro'tFo)o



- Lets van this to  work out an example of Stokes 's Thm

in Spherical Polar Coordinates
.

For the v. f ,  we 'll vae

I = OF +

08
+ 1 § ,

E
.

for the surface we 'll um

the top half ( upper hemisphere ) of a sphere of

radius R
,

Centered @ the Origin . N .P . Equator

E t

~ S : Surface  Is  r=R
,

OE -0<-172
,

OE  0<25
. -

R
,  

.

it 9 TT

#
All pts  same  dist . Top half of

-

-
- -

I -

-

R from  origin sphere
←

'  
'

EP : Perimeter  is the equator :  F- 12,0=+12 ,
OE¢< ZFd£¥r2s

.no#do/F*hat=rs;nezdo/4=Rd4$
'

# 6 -

Ex # = rs÷no(¥olsmo . 1) -

¥06
) )F +

trtfnoaftyo
) - ootrlri ) )E

+

t.la#os-Etooyos)oT7xE=gnlzcosOr
- tr E + 0$y=ran

sgrfaa

!

see . # ' ⇒ =fIof"Iiorzsmor.gg#oi.iYonYyoigR R=f2I¢ffioks#¥se¥=5gIf¥orc°so

= My Rsinolo
" '

= fowl R = 2*12

Now  integrating de . # around the perimeter :

§ae . 'A=fgY¢r¢ .co#IoYoi0Eoh=sgYor=atr
This  is  a  simple  vedw

,
but  if  it had

any r  or 0  dependence  we 'd be  careful

to set  r  = R E
,

0=+12 !



TH THE LAPLACIAN

- All your
favorite physics equations involve 2nd  derivatives

.

For example ,
the WAVE EQN

d2oyIxI
'

- t.cl#t '
= 0

dtz

-
Now that  we've developed this notion  of a multi - variable

'
Vector . ish

' derivative
,

we should ask how it  might be

applied twice .

- There are multiple answers here
,

but we're
going to

Focus on  one  of them .

- Suppose  we have a scalar function
. It could be the

height  ylp ,0 ) of a point on a vibrating drum head
,

the temperature TH ,y,z ) @ a point  in a slab of  metal
,

or anything

- The GRADIENT of this function
gives us a vector :

Et  
= eotxx +0¥ I + FEE

By = after + t8¥¢

- Now how could we take a
" second

" derivative ? We now

have a vector
,

so we could either take  its curl or  its

divergence .

- But  you can check pretty quickly that Bx ( TTT ) =o !

Ex #ts=xl8¥ -8¥
, )+IlE¥x - k¥ ) + Else

, -8¥,
)=o

-

= 0 by
'

EQUALITY OF MIXED PARTIALS '



- So Bx ( BT ) = 0 no matter what T is
.

And this is

true no  matter what Coordinates you're using
- if a

vector  is Zero  in Cartesian  it can't somehow be  non -

zero in  other words !

- This leaves the divergence :

F. ( BT ) = 92¥ +9¥ + III

- We call this the LAPLAClA= , after Pierre - Simon
,

Marquis de Laplace .
It  is typically abbreviated

as
'

172T
'

,
and if the Laplacian  of a function

is Zero we call that
'

Laplace 's Equation
'

:

172T - B. let )=9¥z+E¥+d¥E=o
FII Evaluate the Laplacian of Flx ,y ,

z ) =  ×2y3EZ2

¥xF= Z×y3e
-

Z2 d2F

of
= 2 y3e

. Z2

off
,

F  = 3x2y2e# day = 6×2 y e-
£2

¥z F  = - Zz  ×2y3e
- ← §¥e = - 2×243 e- -22+4-22×43522

↳ DZF  = ( 243+6×4 - 2×243+422×243 ) e-
←

- But what  if  we want to use CPC
, SPC

, or some

other OCS ? We know how to evaluate both

the gradient & divergence  in an OCS
,

so working
out the Laplacian  is straightforward :



BF  = ht
, the ,

+ highest htsdffses

F. l EF ) = hh÷↳( Eat,( hzhsnt.EE ) + adzlhibhzddtz )

+Iftslhinht.EE ) )

it t.net#alh*EaF.l+EadhFzeEltEahhEEEH

EII Write out Laplace's equation 1724k ,a¢)=O in SPC :

h ,=1 hz=  r h3=r  since

there # lnsinodaty +

¥olr¥0o¥o) +

Forkosh
)

/ 1

= ÷¥rlrz¥r ) + rentals
.no#ot+IoEE

So Laplace's
eqn  in SPC is :

r÷¥rko¥)+ns÷o¥olsmo¥o)+ns÷nod¥z=°



1711 SUMMARY

GRADIENT

EF  
= h÷ Fate ,

+ h÷ EE ez +

hts Eaters

DIVERGENCE

B . It = Th
3

( ¥a
,

Hi hzhs ) + fate ( Az h
, hs ) + ¥3 lash , ha) )

CURL

F x E = E
, n÷h3 (ddgz ( has As ) - ¥3 ( hzaz ) )

+ Ez n÷↳ ( ¥3 1h
,

A) - at
,

lhs A 3) )

+ £3 h,h÷ ( ¥ ( hz Az ) - Ihz ( h
,

A
,
) )

LAPLACIAN

to  = nn÷↳l¥alh÷ ¥
,

) + In H÷eE) + Esteem )

CARTESIAN COORDINATES

IF  = Efjx + 9¥ y + 1¥ E

B . I = DEF + dotty + date

Exit = left - 9¥' ) i + ( EFE - EFF ) i + I EET . EEFIE

at = Ext + DIE + IF



SPHERICAL POLAR COORDS

( 9
, , 92,93 ) = ( r

, 0,0 ) hr =
1 hoe =  r h¢ =  r  Sino

BF  = IF : + IEFOE + ¥0 IF $

B. I = r÷¥lr2Ar ) + ¥ # GinoAo ) + rs÷no deaf

BiA=sn÷f"a8-* ' I'¥tr+ts÷of¥rd¥a0Do+Hda±ro'e¥⇒o

the =÷¥rlr2¥ ) + ns÷oa±olsmo¥o) + rate E¥h

CYLINRICAL POLAR COORDINATES

( 91,92
,

93 ) = ( f , 0
,

z ) hp = 1 h¢ =p hz = 1

BF  = ¥ f + td¥¢0 + E¥E
Be E = t¥( p Ae ) + to # lA¢ ) + a¥lAz )

Bx # = ( t # lad - Eaton )f + (

9¥
-

9¥50+ ( et ¥e4A¢ ) - thecae) ) E

in = t¥ele¥e ) + e÷ EE + I¥


